International Journal of Pharmaceutical Research and Development

ISSN Print: 2664-6862
ISSN Online: 2664-6870
Impact Factor: RJIF 8
IJPRD 2024; 6(1): 38-52
www.pharmaceuticaljournal.net
Received: 02-12-2023
Accepted: 03-01-2024

Pradip Kumar Yadav

M Pharmacy, Department of Pharmaceutical Analysis, Aditya Bangalore Institute of Pharmacy Education and Research, Kogilu, Bangalore, Karnataka, India

Paul Richards M

Professor, Department of Pharmaceutical Analysis, Aditya Bangalore institute of Pharmacy Education and Research, Kogilu, Bangalore, Karnataka, India

BA Vishwanath

Chairman, Department of Pharmaceutical Analysis, Aditya Bangalore institute of Pharmacy Education and Research, Kogilu, Bangalore, Karnataka, India

Corresponding Author:
Pradip Kumar Yadav M Pharmacy, Department of Pharmaceutical Analysis, Aditya Bangalore institute of Pharmacy Education and Research, Kogilu, Bangalore, Karnataka, India

Stability indicating method development and validation for the determination of piperaquine tetraphosphate and dihydro artemisinin by RP HPLC

Arun Kumar Sah, Paul Richards M and BA Vishwanath
DOI: https://doi.org/10.33545/26646862.2024.v6.ila. 42

Abstract

On the basis of experimental results, the proposed method is suitable for the quantitative determination of piperaquine tetraphosphate and dihydro artemisinin in pharmaceutical dosage form. The method provides great sensitivity, adequate linearity and repeatability. The estimation of piperaquine tetraphosphate and dihydro artemisinin was done by RP-HPLC. The Phosphate buffer was pH 3.6 and the mobile phase was optimized which consists of Methanol: Phosphate buffer mixed in the ratio of $70: 30 \% \mathrm{v} / \mathrm{v}$. A Symmetry C18 ($4.6 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}$, Make XTerra) column used as stationary phase. By using UV detector at 273 nm .

Keywords: RP-HPLC, Symmetry C18, piperaquine tetraphosphate and dihydro artemisinin

Introduction

Piperaquine Tetraphosphate

Indication: For the treatment of uncomplicated Plasmodium falciparum infection in adults, children, and infants aged 6 months and up weighing over 5 kg . Used in combination with Artenimol.

Mechanism of action: The mechanism of piperaquine inhibition of the haem detoxification pathway is unknown but is expected to be similar to that of Chloroquine.

Drug: Dihyroartemisinin
Indication: For the treatment of uncomplicated Plasmodium falciparum infection in adults, children, and infants aged 6 months and up weighing over 5 kg . Used in combination with Piperaquine.

Mechanism of action: The proposed mechanism of action of Dihyroartemisinin involves cleavage of endoperoxide bridges by iron, producing free radicals which damage biological macromolecules causing oxidative stress in the cells of the parasite. Malaria is caused by apicomplexans, primarily Plasmodium falciparum, which largely reside in red blood cells and itself contains iron-rich heme-groups (In the form of hemozoin). In 2015 artemisinin was shown to bind to a large number targets suggesting that it acts in a promiscuous manner. Recent mechanism research discovered that artemisinin targets a broad spectrum of proteins in the human cancer cell proteome through heme-activated radical alkylation.

Literature Review

1. Uday A et al., High Performance Liquid Chromatography (HPLC) methods are described for determination of drugs as a single or in combination in bulk or pharmaceutical formulation. The objective of the present study was to develop and validate novel, accurate, sensitive, precise, rapid and isocratic reverse Phase HPLC (RPHPLC) method for the simultaneous determination of Piperaquine phosphate and Dihydroarte in bulk because no method is available for simultaneous estimation of these drugs.
2. Venkata Raveendra Babu Vemula et al., A new reversed-phase HPLC method was developed and subsequently validated for simultaneous estimation of arterolane maleate and piperaquine phosphate in pharmaceutical dosage forms.) with a μ Chromatography is carried out at $30^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}$ on Inertsil Silica C18 column ($250 \times 4.6 \mathrm{~mm}$, 5 mobile phase composed of buffer and acetonitrile (25:75) at a flow rate of 1.0 $\mathrm{mL} / \mathrm{min}$. Detection was carried out using a PDA detector at 223 nm . The retention times for Arterolane maleate and piperaquine phosphate are 3.1 min . and 7.2 min., respectively.
3. Joseph MD Fortunak et al., to provide a robust, efficient synthesis of the malaria drug piperaquine for potential use in resource-poor settings. Methods: We used in-process analytical technologies (IPAT; HPLC) and a program of experiments to develop a synthesis of piperaquine that avoids the presence of a toxic impurity in the API and is optimized for overall yield and operational simplicity. Results: A green-chemical synthesis of piperaquine is described those proceeds in $92-93 \%$ overall yield.
4. Linda L Kjellin et al., We report a sensitive LCMS/MS. Method for quantitation of PQ with only $25 \mu \mathrm{I}$ human plasma. Using a deuterated internal standard (PQ-d d_{6}, an analytical PFP column, APCI^{+}as the ion source and MRM (535/288 for PQ and 541/294 for the IS) for detection, the method has a linear calibration range of $1.5-250 \mathrm{ng} / \mathrm{ml}$ with a runtime of 3.0 min per sample. The method was applied to plasma samples from children.
5. Sam Salman et al., Pharmacokinetic differences between piperaquine (PQ) base and PQ tetraphosphate were investigated in 34 Papua New Guinean children aged 5 to 10 years treated for uncomplicated malaria with artemisinin-PQ (ART-PQ) base or dihydroarte-PQ (DHA-PQ) tetraphosphate. Twelve children received ART-PQ base (two daily doses of 3 mg of ART and 18 mg of PQ base as granules $/ \mathrm{kg}$ of body weight) as recommended by the manufacturer, with regular clinical assessment and blood sampling over 56 days.

Materials and Methods

Materials: The list of instruments used in the course of experimental work is as follows.

Table 1: List of Instruments

S. No.	Instrument	Model No.	Software	Manufacturer's name
1	HPLC Alliance PDA Detector	Waters 2695 Waters 996	Empower	Waters
2	UV double beam spectrophotometer	UV 3000	UV Win 5	Lab India
3	Digital weighing balance	BSA224SCW	-	Satorius
4	pH meter	AD102U	-	Lab India
5	Ultra sonicator	SE60US	-	-
6	Suction pump	VE115N	-	-

The experimental work involves several chemicals

Table 2: List of Chemicals

S. No.	Chemicals	Manufacturer	Grade
1	Water	Merck	HPLC Grade
2	Methanol	Merck	HPLC Grade
3	Acetonitrile	Merck	HPLC Grade
4	Potassium dihydrogen orthophosphate	Merck	A. R
5	Piperaqu tetraphosphate $\&$ dihydroart	-	-

Preparations and procedures

Preparation of Phosphate buffer: (PH: 4.6): Weighed 6.8 grams of KH2PO4 was taken into a 1000 ml beaker, dissolved and diluted to 1000 ml with HPLC water, adjusted the pH to 4.6 with ortho phosphoric acid.

Preparation of mobile phase: A mixture of pH 4.6 Phosphate buffer 300 mL (30%), 700 mL of MEOH (70%) are taken and degassed in ultrasonic water bath for 5 minutes. Then this solution is filtered through 0.45μ filter under vacuum filtration.

Diluant Preparation: Mobile phase is used as Diluant.
Preparation of the individual Piperaquine tetraphosphate standard preparation: 10 mg of Piperaquine tetraphosphate working standard was accurately weighed and transferred
into a 10 ml clean dry volumetric flask and about 2 ml of diluent is added.

Preparation of the individual Dihydroarte standard preparation: 10 mg of Dihydroarte working standard was accurately weighed and transferred into a 10 ml clean dry volumetric flask and about 2 ml of diluent is added.

Preparation of Sample Solution: Accurately 10 tablets are weighed and crushed in mortar and pestle and weight equivalent to 10 mg of Dihydroarte and Piperaquine tetraphosphate (marketed formulation) sample into a 10 mL clean dry volumetric flask and about 7 mL of Diluents is added and sonicated to dissolve it completely and made volume up to the mark with the same solvent. (Stock solution).

Procedure: $10 \mu \mathrm{~L}$ of the standard, sample are injected into the chromatographic system and the areas for Dihydroarte and Piperaquine tetraphosphate peaks are measured and the \% Assay are calculated by using the formulae.
Theoretical plates for the Dihydroarte and Piperaquine tetraphosphate peaks in Standard solution should not be less than 2000

Assay calculation

Assay $\%=\frac{\text { sample area }}{\text { Standard area }} \times \frac{\text { dilution sample }}{\text { dilution of standard }} \times \frac{P}{100} \times \frac{A v g \cdot w t}{L c} \times 100$

Where,
$P=$ Percentage purity of working standard
$\mathrm{Lc}=$ Label claim of drug in $\mathrm{mg} / \mathrm{ml}$.

Linearity

The linearity range was found to lie from 25% to 125% and chromatograms are shown below.

Area of different concentration of Piperaquine tetraphosphate and Dihyroartemisinin

Concentration $(\boldsymbol{\mu} \mathbf{g} / \mathbf{m l})$	Peak area of Piperaquine tetraphosphate	Peak area of Dihyroartemisinin
25	296800	179891
50	653819	387781
75	983775	599708
100	1342535	799619
125	1694286	1019614

Fig 1: Calibration graph for Piperaquine tetraphosphate at 273 nm

Fig 2: Calibration graph for Dihyroartemisinin at 273 nm
Table 3: Analytical performance parameters of Piperaquine tetraphosphate and Dihyroartemisinin

Parameters	Piperaquine tetraphosphate	Dihyroartemisinin
Slope (m)	13644	8192
Intercept (c)	24221	14308
Correlation coefficient $\left(\mathrm{R}^{2}\right)$	$\sim 40 \sim$	0.999

Acceptance criteria
Correlation coefficient ($\mathbf{R}^{\mathbf{2}}$) should not be less than 0.999

The correlation coefficient obtained was 0.999 which is in the acceptance limit. The linearity was established in the range of 25 to $150 \mu \mathrm{~g} / \mathrm{ml}$.

Accuracy

Fig 3: Chromatogram for sample concentration-50\%

Fig 4: Chromatogram for sample concentration-50\%

Fig 5: Chromatogram for sample concentration-50\%

Fig 6: Chromatogram for sample concentration-100\%

Fig 7: Chromatogram for sample concentration-100\%

Fig 8: Chromatogram for sample concentration-100\%

Fig 9: Chromatogram for sample concentration 150\%

Fig 10: Chromatogram for sample concentration 150%

Fig 11: Chromatogram for sample concentration-150\%

Table 4: Results of Accuracy

Sample concentration	Sample set no	Sample area		Assay		\% Recovery	
		ARTE	PIPE	ARTE	PIPE	ARTE	PIPE
50\%	1	460064	276931	24.9	25.0	99.8	100
	2	460124	276694	24.6	24.9	99.6	99.6
	3	460216	276891	24.8	24.9	99.8	99.6
	Average Recovery					99.7\%	99.7\%
100\%	1	923429	554156	49.9	50.0	99.8	100
	2	923654	554897	49.8	49.9	99.6	99.8
	3	923742	556371	49.8	49.9	99.6	99.8
	Average recovery					99.6\%	99.8\%
150\%	1	1387901	828113	74.8	75.0	99.8	100
	2	1385360	828794	74.9	74.9	99.8	99.8
	3	1386984	828349	74.6	74.8	99.6	99.8
	Average recovery					99.7\%	99.8\%

Acceptance criteria

The percentage recovery at each level should be between (97-103\%)

- The results obtained for recovery at $50 \%, 100 \%, 150 \%$ are within the limits. Hence the method is accurate.

Precision

Precision of the method was carried out for both sample and standard solutions as described under experimental work. The corresponding chromatograms and results are shown below.

Fig 12: Chromatogram for sample injection-1

Fig 13: Chromatogram for sample injection-2

Fig 14: Chromatogram for sample injection-3

Fig 15: Chromatogram for sample injection-4

Fig 16: Chromatogram for sample injection-5

Table 5: Results of method precision for Piperaquine tetraphosphate

S. No	Sample area	Standard area	Percentage purity
1	983375	971536	101.04
2	985049	973007	101.03
3	982956	975717	100.54
4	985219	978909	100.44
5	994145	981422	101.09
Average			100.84
$\%$ RSD		0.304	

Table 6: Results of method precision for Dihyroartemisinin

S. No	Sample area	Standard area	Percentage purity
1	592403	577531	101.36
2	592352	580381	101.85
3	592357	577723	102.32
4	592323	582190	101.44
5	596525	583378	101.09
Average			101.24
$\%$ RSD			0.46

Acceptance criteria: \% RSD for sample should be NMT 2

- The \% RSD for the standard solution is below 2, which is within the limits hence the method is precise.

Intermediate Precession (Ruggedness)

Fig 17: Chromatogram for sample injection-1

Fig 18: Chromatogram for sample injection-2

Fig 19: Chromatogram for sample injection-3

Fig 20: Chromatogram for sample injection-4

Fig 21: Chromatogram for sample injection-5

Table 7: Results of Intermediate precision for Piperaquine tetraphosphate

S. No	Sample area	Standard area	Percentage purity
1	979556	984395	99.30
2	982467	984039	99.64
3	979717	983976	99.36
4	978909	984278	99.28
5	981432	973915	100.57
Average			99.63
\%RSD			0.54

Table 8: Results of Intermediate precision for Dihyroartemisinin

S. No	Sample area	Standard area	Percentage purity
1	583416	593403	99.12
2	583657	594352	99.01
3	584731	593357	99.52
4	583594	592673	99.61
5	597649	593671	99.12
Average			99.27
$\%$ RSD			0.27

Acceptance criteria: \% RSD of five different sample solutions should not be more than 2

- The \% RSD obtained is within the limit, hence the method is rugged.

Limit of Detection for Piperaquine Tetraphosphate and Dihyroartemisinin

The lowest concentration of the sample was prepared with respect to the base line noise and measured the signal to noise ratio.

Fig 22: Chromatogram of Piperaquine tetraphosphate showing LOD

Fig 23: Chromatogram of Dihyroartemisinin showing LOD

Table 9: Results of LOD

Drug name	Baseline noise $(\boldsymbol{\mu} \mathbf{V})$	Signal obtained $(\boldsymbol{\mu} \mathbf{V})$	S/N ratio
Piperaquine tetraphosphate	56	176	3.14
Dihyroartemisinin	56	154	2.75

Acceptance criteria: Signal to noise ratio should be 3 for LOD solution

- The results obtained are within the limit.

7.3.6 Limit of Quantitation for Piperaquine Tetraphosphate and Dihyroartemisinin

The lowest concentration of the sample was prepared with respect to the base line noise and measured the signal to noise ratio

Fig 24: Chromatogram of Piperaquine tetraphosphate showing LOQ

Fig 25: Chromatogram of Dihyroartemisinin showing LOQ
Table 10: Results of LOQ

Drug name	Baseline noise $(\boldsymbol{\mu} \mathbf{V})$	Signal obtained $(\boldsymbol{\mu} \mathbf{V})$	S/N ratio
Piperaquine tetraphosphate	56	563	10.05
Dihyroartemisinin	56	558	9.96

Acceptance criteria: Signal to noise ratio should be 10 for L.O.Q solution

- The results obtained are within the limit.

6.3.7 Robustness

The standard and samples of Piperaquine tetraphosphate and Dihyroartemisinin were injected by changing the conditions of chromatography.

Variation in flow

Fig 26: Chromatogram showing less flow of $0.7 \mathrm{ml} / \mathrm{min}$

Fig 27: Chromatogram showing more flow of $0.9 \mathrm{ml} / \mathrm{min}$

Variation of mobile phase composition

Fig 28: Chromatogram showing less organic composition

Fig 29: Chromatogram showing more organic composition
Table 11: Results for effect of variation in flow

S. No	peak area for Less flow (0.7 ml/min)		peak area for More flow (0.9 ml/min)	
	Piperaquine tetraphosphate	Dihyroartemisinin	Piperaquine tetraphosphate	Dihyroartemisinin
1	983465	575351	971563	592641
2	985134	580381	973021	592352
3	983467	587724	975674	595471
4	985217	583190	978974	594416
5	994245	584468	984542	583453
Mean	986306	582223	976755	591667
$\%$ RSD	0.45	0.80	0.53	0.80

Table 12: Results for effect of variation in mobile phase composition

S. No	Peak area for Less organic (70\%)		Peak area for More organic (90\%)	
	Piperaquine tetraphosphate	Dihyroartemisinin	Piperaquine tetraphosphate	Dihyroartemisinin
1	984565	574371	981565	593761
2	986134	585481	983527	592462
3	984268	587627	985489	594491
4	986216	585362	987954	596316
5	995247	585448	994672	587353
Mean	987286	583658	986641	592877
\%RSD	0.45	0.90	0.51	0.57

Acceptance criteria: Percentage RSD should not be more than 2.

- The \% RSD obtained for change of flow rate, variation in mobile phase was found to be below 2, which is within the acceptance criteria. Hence the method is robust.

Summary and Conclusion

The estimation of Pipera Tetrapho and Dihydro artemisinin was done by RP-HPLC. The Phos buff was pH 4.6 and the mobile phas was optimized which consists of Methanol: Phosphate buffer mixed in the ratio of $70: 30 \% \mathrm{v} / \mathrm{v}$. A Symmetry C18.1 ($4.6 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}$, Make XTerra) column used as stationary phase. The detection was carried out using UV detector at 273 nm . The solutions were chromatographed at a constant flow rate of $1.0 \mathrm{ml} / \mathrm{min}$. the linearity range of Pipera Tetrapho and Dihydro artemisinin
were found to be from $25-125 \mu \mathrm{~g} / \mathrm{ml}$. Linear regression coefficient was not more than 0.999 .

References

1. Sharma BK. Instrumental methods of chemical analysis, Introduction to analytical chemistry. 23rd ed. Goel Publication, Meerut; c2007.
2. Lindholm J. Development and Validation of HPLC Method for Analytical and Preparative purpose. Acta Universitatis Upsaliensis; c2004, p. 13-14.
3. Rashmin. An introduction to analytical method development for pharmaceutical formulations. Indoglobal J Pharm Sci. 2012;2(2):191-196.
4. Malvia R, Bansal V, Pal OP, Sharma PK. A Review of High-Performance Liquid Chromatography. J Global Pharma Technol; c2010.
5. Skoog DA, Holler FJ, Nieman TA. Principles of Instrumental Analysis. $6^{\text {th }}$ Ed. p. 725-760.
6. Shankar SR. Textbook of pharmaceutical analysis. 4th Ed. p. 13.1-13.2.
7. Watson DG. Pharmaceutical Analysis, A textbook for Pharmacy students and Pharmaceutical Chemists. 2nd ed. Harcourt Publishers Limited; p. 221-232.
8. Remington's. The Science and Practice of Pharmacy. $20^{\text {th }}$ Ed; c2000.
9. Connors KA. A Textbook of Pharmaceutical Analysis. $3^{\text {rd }}$ Ed. Wiley Intersciences INC; Delhi; c1994, p. 373421.
10. Chatwal GR, Anand SK. Instrumental Methods of Chemical Analysis; c2007, p. 2.566-2.638.
11. Watson DG. Pharmaceutical Analysis, A textbook for Pharmacy students and Pharmaceutical Chemists. $2^{\text {nd }}$ ed. Harcourt Publishers Limited. p. 267-311.
12. Nasal A, Siluk D, Kaliszan R. Chromatographic Retention Parameters in Medicinal Chemistry and Pharmacology. Pubmed. 2003;10(5):381-426.
13. Kumar A, Kishore L, Kaur N, Nair A. Method development and validation for pharmaceutical analysis. Int Pharmaceutica Sciencia. 2012;2(3):JulSep.
14. Kaushal C, Srivatsava B. A Process of Method Development: A Chromatographic Approach. J Chem Pharm Res. 2010;2(2):519-545.
15. Gupta V, Jain ADK, Gill NS, Kapil. Development and Validation of HPLC method. Int Res J Pharm Appl Sci. 2012;2(4):Jul-Aug.
16. Hokanson GC. A life cycle approach to the validation of analytical methods during Pharmaceutical Product Development. Part 1: The Initial Validation Process. Pharm Tech. 1994;92-100.
17. Green JM. A Practical guide to analytical method validation. Anal Chem. 1996;305A-309A.
18. ICH. Validation of analytical procedures: Text and Methodology. International Conference on Harmonization, IFPMA, Geneva; c1996.
19. Uday A, et al. Development and validation of RPHPLC method for simultaneous estimation of piperaquine phosphate and Dihydro artemisinin in bulk. Int J Pharm Pharm Sci. 2014;6(8):20.
20. Vemula VARB, et al. HPLC method development and validation for simultaneous estimation of arterolane maleate and piperaquine phosphate in bulk and tablet dosage form. Int J Res Pharm Chem.
21. Fortunak JMD, et al. Green chemicals synthesis of the malaria drug, Piperaquine Bioanalysis. 2014;6(23):3081-3089.
22. Kjellin LL, et al. Determination of the antimalarial drug piperaquine in small volume pediatric plasma samples by LC-MS/MS an ASM Journals Collection.
23. Salman S, Page-Sharp M, et al. Pharmacokinetic comparison of two piperaquine-containing artemisinin combination therapies in papua new guinean children with uncomplicated Malaria. Antimicrob Agents Chemother. 2012;56(6):3288-3297.
